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Abstract
Meta-analysis has been an integral tool for fisheries researchers since the late

1990s. However, there remain few guidelines for the design, implementation or

interpretation of meta-analyses in the field of fisheries. Here, we provide the neces-

sary background for readers, authors and reviewers, including a brief history of the

use of meta-analysis in fisheries, an overview of common model types and distinc-

tions, and examples of different goals that can be achieved using meta-analysis.

We outline the primary challenges in implementing meta-analyses, including diffi-

culties in discriminating between alternative hypotheses that can explain the data

with equal plausibility, the importance of validating results using multiple lines of

evidence, the trade-off between complexity and sample size and problems associated

with the use of model output. For each of these challenges, we also provide sugges-

tions, such as the use of propensity scores for dealing with selection bias and the

use of covariates to control for confounding effects. These challenges are then illus-

trated with examples from diverse subfields of fisheries, including (i) the analysis of

the stock–recruit relationship, (ii) fisheries management, rebuilding and population

viability, (iii) habitat-specific vital rates, (iv) life-history theory and (v) the evalua-

tion of marine reserves. We conclude with our reasons for believing that meta-

analysis will continue to grow in importance for these and many other research

goals in fisheries science and argue that standards of practice are therefore essen-

tial.
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Introduction

The use of meta-analysis in fisheries science has

steadily increased during the past two decades. In

‘Standing on the shoulders of giants: learning

from experience in fisheries’, Hilborn and Lier-

mann (1998) describe meta-analysis as a formal

and quantitative approach to learning from past

experience that can guide future research and

management in fisheries science. Ram Myers pop-

ularized this approach through his many contri-

butions to fisheries ecology and management

(Myers 2001), much of which was gleaned from

meta-analytic methods and a stock–recruit data-

base that is still in use today (Ricard et al.

2012). These and other meta-analyses from this

period revolutionized the understanding of the

relationship between stock size and recruitment

(Myers 2001), the likelihood of depensatory

recruitment (Liermann and Hilborn 1997), and

the usefulness of catch-per-unit-effort data (Harley

et al. 2001).

Despite the important role for meta-analysis in

fisheries science, there is no published list of ‘best

practices’ for those who wish to either conduct or

interpret meta-analyses. In fact, there is almost no

definition of meta-analysis in fisheries science. Per-

haps for this reason, the term meta-analysis is

used for studies ranging from qualitative summa-

ries of previously published results to massive sta-

tistical models that analyse data from hundreds of

species.

In this study, we cast a retrospective look at

what has been learned by standing on the shoul-

ders of giants. We summarize the challenges that

continue to exist for the proper design and inter-

pretation of meta-analytic studies, including the

reliance upon model output as ‘data’ and the lack

of globally representative databases. We then pro-

vide guidelines for the design and interpretation of

future meta-analyses, and conclude by summariz-

ing the many lessons that fisheries science has

gained from meta-analytic studies since 1998. We

intend to focus attention on outstanding chal-

lenges, guide future research, and aid authors,

readers, and reviewers in the design and interpre-

tation of future meta-analyses.

Background

A brief history of meta-analysis

Meta-analysis arose originally as a way to test a

hypothesis using information from multiple experi-

ments. Researchers have long sought a quantita-

tive method to synthesize results that incorporate

some measures of confidence for each study,

rather than simply treating each study as a vote

in favour or against a hypothesis and ‘counting

the votes’. An early proposal by Fisher (1925)

combined the P-values obtained from multiple

experiments. Fisher recognized that P-values

derived from maximum likelihood statistics under

the null hypothesis follow a uniform distribution,

such that �2∙ln(p) follows a chi-squared (v2)
distribution with two degrees of freedom. Because

the sum of chi-squared distributions is itself

chi-squared, this forms the basis for the first

meta-analytic rule for hypothesis testing with

n-independent experiments,
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P ¼ �2
Xn
i¼1

lnðpiÞ ð1Þ

where P is compared with a chi-squared distribu-

tion with 2n degrees of freedom to either reject or

fail to reject a null hypothesis. Fisher’s method

incorporates the weight of evidence for a given

hypothesis from each study by means of the esti-

mated P-value, rather than simply counting the

studies that support or contradict a hypothesis.

Fisher’s method was followed by many other for-

mulas for combining P-values and determining the

statistical significance of the resulting statistic

(Hedges and Olkin 1985).

Fisher’s method is a simple example of a two-

stage meta-analysis, in which an analysis is con-

ducted for each experimental unit (i.e. study, spe-

cies, etc.), and then results are synthesized in a

second-stage meta-analysis model. More recent

two-stage approaches include ‘effect-size models’,

which typically extract an estimated result from

each study (e.g. a response ratio for density inside

and outside of an experimental treatment) and its

standard errors (Gurevitch and Hedges 1999).

Effect-size approaches are superior to Fisher’s

method and similar P-value-based approaches

because they incorporate estimates of standard

errors from each study as a weighting factor. This

allows them to distinguish between the magnitude

of an effect (an estimated value) and its precision

(its standard error), which are confounded in a

P-value, and hence can estimate an overall effect-

size as well as test hypotheses. However, effect-size

approaches have several drawbacks, including the

so-called ‘file-drawer problem’ (i.e. published

results may be biased towards statistical signifi-

cance, Rosenthal 1979) and various consequences

of using model output as ‘data’ (as discussed

later).

Most recently, researchers have developed sin-

gle-stage meta-analysis models as an alternative

to the preceding two-stage models. These single-

stage models analyse data or relatively unpro-

cessed output from each population or study

while simultaneously estimating parameters that

represent the comparison among populations or

studies. This single-stage approach is still suscep-

tible to the ‘file-drawer’ problem, but avoids the

issue of using model output as ‘data’. In fisheries

science, this single-stage approach to meta-analysis

was popularized by Ram Myers in a series of

papers beginning in the late 1990s (Myers and

Mertz 1998; Myers et al. 1999; Myers 2001).

As one example, Harley et al. (2001) compare

research trawl and fishery catch-per-unit-effort

data to determine whether fishing efficiency

changes with stock size. These and other method-

ological developments in the late 1990s led to

the proliferation of meta-analytic research in fish-

eries (Fig. 1).

Rigorous meta-analyses also allow for variability

among species, study sites, or whatever experi-

mental unit is being studied. Variability that

occurs randomly among experimental units is

plausible in many situations, for example, different

field sites may have small but repeatable differ-

ences in species densities (Osenberg et al. 1999) in

addition to variability caused by sampling. Such

variation among experimental units is ubiquitous

in ecological studies due to variability in the bio-

logical processes and rates that govern ecological

dynamics. Biological variability can be incorpo-

rated using ‘hierarchical’ models (Clark 2003; Ro-

yle and Dorazio 2008), wherein biological

differences between experimental units are treated

as random effects, with a prespecified parametric

form for the variation. Hierarchical models have

been developed for two-stage meta-analysis

(Hedges and Olkin 1985) and have recently been

advocated as a framework for ecological models in

general (Royle and Dorazio 2008). The power of

meta-analytic approaches derives largely from the
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Figure 1 Number of publications per year listed in Web

of Science using search terms ‘fisheries’ and ‘meta-

analysis’ in their science database (queried on September

5, 2012).
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flexibility of hierarchical structures to approximate

nested biological systems (e.g. individual demo-

graphics within a population) and the model’s

ability to partition variability into meaningful

units. We next discuss a general framework for

considering variability in meta-analyses.

Sources of variability in meta-analysis

Meta-analytic studies seek to combine information

about a process or hypothesis from multiple exper-

imental units (i.e. studies, populations, sites, etc.).

Ecological processes are often expressed using bio-

logical models, and hypotheses are evaluated by

determining the ability of alternative biological

hypotheses to explain available data (Hilborn and

Mangel 1997).

Results may differ among experimental units

due to three fundamental sources of variability

(modified from Osenberg et al. 1999): experimen-

tal, parametric and functional variability. Experi-

mental variability refers to random differences in

study results due to sampling, as addressed by

standard sampling theory and most statistical

methods (Clark 2007). Parametric variability

arises when different experimental units (e.g. pop-

ulations) can be described by a common biological

model, but the parameters of this model differ

among units. For example, juvenile carrying

capacity may vary among habitats for a given

fish population but be well approximated by a sin-

gle model for juvenile survival (Myers et al.

2001). Finally, functional variability refers to dif-

ferences in the underlying biological processes,

such that different experimental units have funda-

mentally different dynamics and require different

biological models to be suitably approximated and

interpreted. Functional variability may arise, for

example, if some habitats for a fish population

have population dynamics that are driven by

environmental factors, while other habitats have

density-dependent population dynamics (Hixon

et al. 2012). Meta-analysis always seeks to

account for the experimental variability of each

study, while hierarchical meta-analysis also seeks

to account for parametric variability by assuming

that variation in parameters can itself be

described by a distribution of possible values, that

is, using random effects. However, few fisheries

meta-analysis studies have addressed functional

variability, and this is an important topic for

future research.

Three estimation goals for meta-analysis

Meta-analyses are used for a variety of reasons,

as indicated by the diversity of meta-analysis

models. We will illustrate a few of the possible

applications using terminology from hierarchical

models (Gelman and Hill 2007; Royle and Dorazio

2008) and a simple thought experiment involving

several species and a meta-analysis on a single

parameter. In hierarchical models, researchers

hypothesize that all observation units (e.g. popula-

tions) are influenced by a shared ecological pro-

cess, but that parameters representing this process

may differ among units. The parameter that var-

ies among units is treated as a ‘random effect’

(i.e. a random variable that is not directly

observed), and a statistical distribution of probable

values (a ‘hyperdistribution’) is specified for the

parameter. Then, parameters representing the dis-

tribution of possible values for the random effect

are estimated:

Lðh;ujDataÞ ¼
Ynstudies
i¼1

Z

ei

Lðhi; eijDataiÞpðeijuÞ � dei ð2Þ

where L(h, / | Data) is the likelihood of all fixed

effects h and hyperparameters / given the data

Data, L(hi,ei|Datai) is the likelihood of single-study

parameters hi and random effects ei for species i

given data Datai for that species, and p(ei | /) is

the hyperdistribution for random effects given

hyperparameters. Note that the product across the

studies implicitly assumes that the observed stud-

ies are independent observations of a single shared

process defined by the parameters. Using this ter-

minology, we distinguish three types of inference

for meta-analyses (expanding upon those in Min-

te-Vera et al. 2005):

1. group-level inference: Meta-analyses are fre-

quently conducted to estimate a parameter or

the statistical significance of a hypothesis test

for a group of experimental units in general.

This group-level inference corresponds to the

hyperparameters in a hierarchical model, that

is, the mean and variance of a Gaussian hyper-

distribution. The group-level mean is inter-

preted as an aggregate estimate of the process

in general, and the standard error for the mean

can be used to calculate statistical significance

(i.e. whether the mean differs from a particular

value in a statistically significant manner).

Group-level inference also corresponds to the
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Fisher chi-squared meta-analytic test and con-

ventional effect-size methods;

2. individual-level inference: Meta-analyses can

also be conducted to improve estimates for each

experimental unit included in the analysis. This

corresponds to improved estimates of random

effects (ei in Equation 2) for each study and has

been called the ‘Robin Hood approach’ because

it borrows information from the data rich to

give to the data poor (Punt et al. 2011). For

example, single-species estimates of recruitment

compensation are likely to be imprecise, and

their precision will generally be improved when

included in a meta-analysis (Dorn 2002)

because each single-species estimate will be

shrunk towards the group mean (Gelman and

Hill 2007). Increased precision comes with a

price, however. The shrinkage of parameter esti-

mates towards the group-level mean implies

that the parameter estimates for each popula-

tion are being pulled away from the observed

data for each individual population. This shrink-

age is appropriate if all hierarchical parameters

are ‘exchangeable’ (i.e. there is no additional

information about their order or value for each

individual, Gelman et al. 2003), but will intro-

duce bias into individual population estimates if

populations differ in unmodelled ways. This fact

highlights how using hierarchical models for

individual-level inference is a trade-off between

increased precision and bias in the individual

population estimates, and how it is important to

identify ‘exchangeable’ experimental units when

using a hierarchical model (see Gelman et al.

2003 for more details);

3. predictive inference: Hilborn and Liermann

(1998) argue that the main benefit of meta-

analysis is to formalize past experience for a

experimental unit that is not included in any

given meta-analysis. This prediction depends

upon the fixed-effect hyperparameters / in the

hyperdistribution p(ei | /), which includes the

estimate of between-unit variability and also

the precision of all parameter estimates (‘esti-

mation error’).

These types of meta-analysis are summarized in

Fig. 2 (derived from Minte-Vera et al. 2005).

Additionally, meta-analyses can be conducted

using Bayesian or frequentist statistical methods.

Bayesian methods are increasingly common in

fisheries meta-analysis (Su et al. 2004; Helser et al.

2007; Keith et al. 2012; Zhou et al. 2012), partly

because Bayesian computational methods (i.e.

Markov chain Monte Carlo) and software (e.g.

BUGS and JAGS; Lunn et al. 2000; Plummer

2003) ease estimation of hierarchical models (see

Royle and Dorazio 2008). Additionally, Bayesian

approaches can incorporate prior information from

previous research (Hilborn and Liermann 1998).

However, Monte Carlo kernal likelihoods can be

used to estimate nonlinear hierarchical models in

a maximum likelihood setting (De Valpine and Hil-

born 2005), and maximum likelihood approaches

may be preferred when appropriate or ‘uninforma-

tive’ priors cannot be identified. Given these subtle

differences, we follow De Valpine (2009) in recom-

mending that analysts first choose an appropriate

hierarchical model for meta-analysis and then

decide between Bayesian and maximum likelihood

implementations as a secondary consideration.

Regardless of this choice, we also advocate using

model diagnostic tools to assess goodness of fit

(Rykiel 1996; e.g. see posterior predictive checks

in Keith et al. 2012) and model selection to dis-

criminate among competing hypotheses (Johnson

and Omland 2004; Ward 2008), and combining

goodness of fit and model selection results in the

generation of new hypotheses and models (Gelman

and Shalizi 2012).

Definition

Based on the preceding background, we can iden-

tify the following characteristics for meta-analyses

in fisheries: (i) they summarize multiple (>5) stud-
ies or data from multiple populations and/or spe-

cies that are treated as replicates for a common

ecological process; (ii) they explicitly use a statisti-

cal model (i.e. they do not rely on simple

vote-counting or qualitative review papers); (iii)

they incorporate information or assumptions

about confidence and/or precision for each study,

either implicitly or explicitly. We also distinguish

between hierarchical or non-hierarchical meta-

analysis, where hierarchical models account for

both experimental and parametric variabilities.

Finally, we note the difference between single-

stage and two-stage analytic approaches (as

explained previously).

Challenges and guidelines

We next outline a few common challenges that are

encountered in meta-analytic studies. Challenges
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include the possibility of alternative hypotheses to

equally explain the available data, the computa-

tional trade-off between model complexity and sam-

ple size, the importance of multiple lines of

evidence in drawing strong conclusions and the

drawbacks of analysing model output. This section

is designed to alert researchers, readers and review-

ers to common difficulties that may not be widely

known or acknowledged. Where possible, we sug-

gest general solutions to each problem. We addi-

tionally summarize these challenges and

suggestions by providing six principles of fisheries

meta-analysis, as summarized in Table 1.

Alternative hypotheses

Meta-analyses frequently use data that were previ-

ously collected for a different purpose (‘opportunis-

tic data’). For this reason, meta-analyses almost

always have to contend with multiple hypotheses

that could explain observed data. We outline two

examples that highlight this issue and propose

solutions for each.

1. Accounting for selection bias using propensity

scores

Many large-scale meta-analyses using opportu-

nistic data will divide experimental units between

treatment and control groups, and will analyse dif-

ferences between these two groups. However, it is

rare that observational studies can randomly

assign experimental units to treatment and control

groups. In fact, experimental units in the treat-

ment group may have been systematically selected

for the treatment according to the pre-existing

qualities. Therefore, any observed differences

between control and treatment group could be

explained either by the effect of the treatment or

alternatively by the selection process for allocating

units to the treatment. As one example, Melny-

chuk et al. (2012) analysed the effect of catch

shares on the ability of fisheries managers to

achieve management targets for 345 fish stocks.

Catch shares in this case were used as a treat-

ment, while non- or partial-catch share fisheries

were used as a control. Catch shares were not ran-

domly assigned, so the probability of having a

Species 1 Species 2 Species 3

Species ??

Hyperdistribution
p(εi|μ,σ)

#1

#2

#3

Figure 2 Schematic diagram showing a hierarchical model and the different estimation foci for various types of meta-

analysis. In this schematic, there exists a hypothetical process that is shared among all four species. #1 shows an

estimate of the process in general (‘group-level inference’) that is obtained using data for species 1–3. #2 shows the

estimate for each of species 1–3 (‘individual-level inference’), where the dashed line in each plot shows an estimate for

each species individually, while the dotted line shows the estimate for a hierarchical model that shrinks each estimate

towards a common mean. #3 shows a predictive distribution for a species with no data (‘predictive inference’), which is

in this case similar to the group-level distribution but also incorporates estimation uncertainty.
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catch share was confounded with the effect of

catch shares. This is an example of selection bias.

To deal with the possibility of selection bias,

Melnychuk et al. (2012) estimated the probability

that each fishery would be managed using catch

shares. This probability represents the ‘propensity’

for each fishery to be in the treatment group and

is hence called a propensity score. Melnychuk

et al. then used propensity score matching to com-

pare treatment and control stocks that had an

approximately equal propensity score, that is, to

only compare management outcomes for stocks

that had an approximately equal probability of

having catch share management. Melnychuk et al.

(2012) also used propensity score regression,

where the estimated probability of having a catch

share is used as a predictor in subsequent statisti-

cal comparisons and hence controls for the con-

founding effect of the selection process for catch

shares. We recommend that propensity scores be

used in similar circumstances for meta-analyses.

2. Controlling for confounding effects using addi-

tional covariates

Meta-analyses involving both experimental and

observational studies will frequently have uncon-

trolled differences among statistical groups, in

addition to any effect of statistical treatments.

Uncontrolled differences between statistical groups

can again be confounded with any group-level dif-

ferences. As one example, Worm and Myers

(2003) correlated shrimp and cod biomass to eval-

uate the strength of evidence for predator control

of shrimp populations. However, they were con-

cerned that apparent correlations in shrimp and

cod abundance may be an artefact of responding

to synchronous changes in temperature. They

therefore ran several models, some of which

included temperature as a covariate, and deter-

mined that the correlation remained significant

even after controlling for temperature. In this

way, they ruled out temperature in explaining the

significant correlation between shrimp and cod

Table 1 Common features of meta-analyses in the fisheries case-studies reviewed in the text. Features include the

complexity of the model used to conduct the meta-analysis, the sample size of individual studies on which the meta-

analysis was based, the degree to which multiple lines of evidence were used to test for effects of treatments, the extent

to which alternative hypotheses were considered in the meta-analysis, the number of stages used to conduct the meta-

analysis (1: the study uses a hierarchical model and analyses observation-level data; 2: the study summarizes model

output from prior analyses), and whether there was any accounting for experimental, parametric and functional

variability in the meta-analysis design.

Complexity
Sample
size

Multiple
lines of
evidence

Considers
alternative
hypotheses

Number
of stages Experimental

Variability
Parametric Functional

Case-study 1: recruitment
Myers et al. (1999) Low 100+ No No 2 Yes Yes No
Su et al. (2004) High 21–100 Yes Yes 2 Yes Yes Yes
Forrest et al. (2010) High 5–20 No Yes 2 Yes Yes Yes
Shertzer and Conn (2012) Med 21–100 No No 2 No No No
Case-study 2: rebuilding, population viability and extinction
Dulvy et al. (2003) Low 100+ No No 2 No No No
Paddack et al. (2009) Low 100+ No Yes 2 Yes No No
Kroeker et al. (2010) Medium 100+ Yes Yes 2 Yes Yes No
Case-study 3: habitat-specific vital rates
Heck et al. (2003) Low 21–100 Yes Yes 2 Yes No No
Minello et al. (2003) Low 21–100 Yes Yes 2 Yes No No
Sheridan and Hays (2003) Low 5–20 Yes No 2 Yes No No
Case-study 4: life history
Froese and Binohlan (2000) Low 100+ No No 2 No No No
Charnov et al. (2013) Low 100+ No No 2 No No No
Helser et al. (2007) High 21–100 No Yes 1 Yes Yes No
Case-study 5: marine reserves
Halpern (2003) Low 21–100 Yes No 2 No No No
Edgar et al. (2004) Med 21–100 Yes Yes 2 Yes Yes No
Babcock et al. (2010) Med 5–20 Yes Yes 2 No No No
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abundance. In this and other cases where a covar-

iate of interest (i.e. treatment vs. control groups) is

correlated with other confounding variables (i.e.

uncontrolled differences in experimental design),

we recommend that analysts include the con-

founding variable in the analysis to explicitly con-

trol for its effect.

Complexity vs. sample size

In addition to estimating a parameter (or parame-

ters) representing a hypothesis of interest, meta-

analytic studies frequently require the estimation

of many additional parameters for each experi-

mental unit. This leads to a computational

trade-off between meta-analyses with many experi-

mental units (e.g. species) but little complexity for

each one or fewer observational units with greater

complexity for each. As an example, Thorson et al.

(2012) estimated the shape of the surplus produc-

tion curve for 147 fish stocks. To accommodate

data from 147 species, they used a simple four-

parameter model for each species. By contrast,

Thorson et al. (2014) analysed observation-level

fishery data for 10 groundfishes to estimate corre-

lations in recruitment off the U.S. West Coast.

Although the latter analysis had fewer species and

consequently fewer degrees of freedom to estimate

the relationship of interest, it was able to model

each individual species using the level of detail

that is generally used in stock assessment models.

Given this computational trade-off, we recommend

that researchers make a decision about an appro-

priate level of detail for each experimental unit

and analyse as many units as possible given that

level of complexity. We also recommend that

researchers seek to replicate results from global

meta-analyses using regional data and greater bio-

logical detail, and vice-versa.

Validation using multiple lines of evidence

Many meta-analyses aspire to estimate a process

or test a hypothesis using all available informa-

tion. However, meta-analytic methods usually

require that all constituent studies use a similar or

comparable method and thus in practice only use

a single type of information. We therefore believe

that there are few meta-analyses that have been

sufficiently replicated using data at different spa-

tial/temporal scales, sampling methods or data

types.

For example, studies regarding correlations in

life-history parameters have generally used life-his-

tory estimates from databases such as FishBase,

whose life-history parameters each have low preci-

sion but in aggregate may be highly informative.

However, fewer life-history studies have attempted

to estimate life-history correlations using regional

or taxa-specific information, and/or higher quality

information derived from fitting directly to obser-

vation-level data. These latter studies could cor-

roborate results from global analyses and would

not necessarily yield identical results, for example,

if region- or taxa-specific differences are large (e.g.

Thorson et al. 2014).

As an example of replication at different spatial

and temporal scales, stock-recruit analyses typi-

cally use stock assessment estimates of stock bio-

mass and recruitment, which are typically

available with sufficient precision for analysis for

<40 years. Studies conducted over a longer time

horizon (e.g. >100 years) have shown much

greater variability in stock biomass (reviewed by

Finney et al. 2010), which are likely driven in part

by recruitment variability at large temporal scales.

Finally, few meta-analyses have been sufficiently

corroborated using multiple sampling methods.

For example, the impact of marine protected areas

on fish biomass is often studied using comparisons

of fish densities and changes in abundance over

time inside and outside reserves. However, results

should ideally be corroborated using additional

information, that is, large-scale estimates of bio-

mass trajectories from stock assessment modelling

and/or fishery catch-per-unit-effort data (e.g. Ham-

ilton et al. 2010, 2011).

Model output and database building

Meta-analytic studies frequently use model output

(i.e. parameter estimates from a preceding model)

as ‘data’ in a subsequent model. This practice is

statistically justified in some cases, for example,

for Fisher’s P-value approach. More frequently,

however, the use of model output results in

minor or serious violation of statistical assump-

tions for meta-analytic models. Maunder and

Punt (2013) outline five problems with the use

of model output: loss of information when con-

verting data to model output; inconsistent

assumptions between the meta-analysis model

and the models that are used to generate model

output; difficulties in identifying a statistical
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likelihood for model output when treated as data;

difficulties in representing precision for model out-

put (i.e. due to covariance or non-normal distri-

bution of model estimates); and reduced ability to

diagnose goodness of fit for the meta-analysis

model.

As a concrete example, stock assessment model

estimates of recruitment and biomass have fre-

quently been analysed to learn about the stock–

recruit relationship (Liermann and Hilborn 1997;

Keith et al. 2012). In this case, recruitment esti-

mates are frequently treated as independent and

having a common variance. Both of these

assumptions are likely violated, for example,

recruitment estimates for a given population are

correlated among years and are likely to be more

or less precisely estimated in different years. Addi-

tionally, deviations from mean estimated recruit-

ment may not follow a lognormal distribution, so

assuming that this distribution for errors may not

be appropriate. We therefore propose that meta-

analysis studies should, where possible, use a sin-

gle model to conduct all analyses, rather than

using model output as input to a meta-analysis.

We acknowledge that single-stage models are not

technically feasible for analyses with hundreds of

species or in situations where primary data are

unavailable to investigators, but believe that it is

a worthwhile goal of meta-analytic research in

fisheries.

Case-study applications

We next present five examples of how meta-analy-

sis is currently used in fisheries and aquatic sci-

ences, including (i) recruitment studies, (ii)

analysis of rebuilding, population viability and

extinction, (iii) analysis of habitat-specific vital

rates, (iv) estimating life-history parameters and

correlations, and (v) evaluating the effect of mar-

ine reserves. Each section is structured to quickly

summarize the main lessons that have been

learned from meta-analysis, while also offering a

critique of the methods that have previously been

used. Our survey of meta-analytic approaches is

meant to be illustrative, not exhaustive; many

excellent studies in each topic area are not dis-

cussed for brevity. We also summarize how impor-

tant studies in each section have responded to the

principles that we propose (Table 2). We then sug-

gest a few improvements that could lead to pro-

gress in each field.

Example 1: recruitment

The past 15 years has seen an explosion of com-

parative studies of fish recruitment. The motiva-

tion for recruitment meta-analyses can be divided

into two categories: (i) to provide biological infor-

mation that can be used in the management of

data poor stocks (Liermann and Hilborn 1997)

and (ii) to synthesize information across popula-

tions and species for identifying general biological

or environmental processes that determine recruit-

ment (Myers et al. 1999). While the first motiva-

tion was emphasized in early meta-analyses and

used as the main motivating example in Hilborn

and Liermann (1998), the emphasis in recent

years has shifted towards synthetic studies of

recruitment processes.

The most significant contribution of recruitment

meta-analyses was also one of the first. Myers

et al. (1999) showed that despite substantial

among-species variation in life-history characteris-

tics, maximum reproductive rate was estimated to

fall in a very narrow range across virtually all spe-

cies examined. Subsequent meta-analyses have

addressed how depensation (Liermann and Hilborn

1997; Keith et al. 2012), age-structure (Brunel

and Boucher 2007; Venturelli et al. 2009), ocean-

ography (Su et al. 2004; Mueter et al. 2007;

Mantzouni et al. 2010) and species interactions

(Minto and Worm 2012) can affect recruitment.

Virtually all of these analyses use published time

series of stock abundance and recruitment derived

from stock assessments as input, and so treat

model output as raw data.

Due to different life-history traits and fisheries

data collection, Myers et al. (1999) decided to con-

vert the magnitude of recruitment compensation

to a dimensionless unit to enable direct compari-

son among stocks. Almost all subsequent analyses

have used some form of standardization in recruit-

ment and justified the standardization on the

grounds that, to be comparable, the replicate units

need to be expressed in identical (preferably

dimensionless) units. The compensation ratio (CR;

Goodyear 1977; Goodwin et al. 2006), spawner-

per-recruit at unfished equilibrium (SPRF = 0;

Myers et al. 1999; Forrest et al. 2010; Mantzouni

et al. 2010) or steepness (h; Mace and Doonan

1988; Dorn 2002) have been used to transform

recruitment compensation to a common scale.

While standardization does transform populations

with distinct biology to a shared scale, the process
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of standardizing recruitment variables presents

some generally unacknowledged complications.

For example, SPRF = 0 is calculated by combining

information about weight-at-age, maturity-at-age

and natural mortality (see Myers et al. 1999;

Goodwin et al. 2006). As all of these quantities

are temporally variable and estimated with uncer-

tainty (especially natural mortality), SPRF = 0

must also be viewed as an uncertain, estimated

quantity. However, all analyses to our knowledge

treat SPRF = 0 as known (e.g. Myers et al. 1999;

Forrest et al. 2010; Mantzouni et al. 2010). The

effect of treating SPRF = 0 as known when it is

not is unclear, but it is certainly true that analyses

based on a fixed SPRF = 0 will understate the

uncertainty of recruitment parameters and affect

the hierarchical model estimates. Furthermore,

transforming information to a single standardized

metric may impose strong but unintended assump-

tions into analyses (Mangel et al. 2010) or intro-

duce undesirable statistical properties that impede

model estimation and biological inference (Conn

et al. 2010).

In spite of the technical complications noted

above, we believe that there is great value in the

use of meta-analysis to identify shared characteris-

tics among stocks. We highlight a study that, in

our opinion, attacks the difficult problem of inte-

grating biological complexity and statistical rigour.

Su et al. (2004) construct a suite of models to esti-

mate how variation in environmental conditions

(e.g. sea surface temperature) affects salmon

recruitment. They consider models where all popu-

lations are considered to be exchangeable (e.g.

independent and identically distributed) samples

from a single process, as well as hierarchical spa-

tial models, which stipulate that geographically

proximate populations are more similar than dis-

tant populations. They show that a spatial model

is favoured over a non-spatial model and estimate

a spatial model where the effect of sea surface tem-

perature varies smoothly across a north-south gra-

Table 2 Six principles for conducting fisheries meta-analysis, including a brief description of the problem that they

address and a recommendation for how they can be achieved.

Principle 1. Choose appropriate model complexity and sample size
Problem: Meta-analyses will frequently involve the analysis of data from tens or hundreds of experimental units.
It is computationally feasible to either have complicated and biologically realistic models for fewer species or simple models
for many species
Recommendation: Choose a level of model complexity that is appropriate for a given question and then select a sample
size that is computationally feasible given this model choice.

Principle 2. Use multiple lines of evidence to support a hypothesis or interpretation
Problem: Meta-analysis will generally incorporate a single type of data and response metrics. However, conclusions may
differ when using different response metrics
Recommendation: Identify corroborating evidence for your conclusion that uses alternative data, metrics and/or theoretical
assumptions.

Principle 3. Consider alternative hypotheses
Problem: Selection bias and uncontrolled (non-randomized) variables can lead to inappropriate inference about the importance
of putative factors causing a given process
Recommendation: Identify alternative hypotheses that could also explain the available data and use biological knowledge
or auxiliary data to discriminate among hypotheses.

Principle 4. Strive for single-stage meta-analysis
Problem: Using an initial model to analyse data for each experimental unit and then a second model to synthesize results
across species will typically violate many statistical assumptions and/or complicate interpretation of final results
Recommendation: Strive to develop a hierarchical model that uses minimally processed (observation level) data for each
unit and simultaneously conducts all between-unit comparisons.

Principle 5. Account for experimental, parametric and functional variability
Problem: Ecological studies typically feature three types of variability: experimental (e.g. sampling errors),
parametric (e.g. differences in demographic rates among populations) and functional (e.g. differences in compensatory
mechanisms among populations)
Recommendation: Seek to incorporate all plausible types of variability, thereby ensuring that any statistical comparisons are sound.
Principle 6. Identify the desired type(s) of inference and proceed accordingly
Problem: Meta-analyses will typically focus on one of three types of inference: group level (e.g. what is the overall process),
individual level (e.g. what is an updated estimate for each population) or predictive (what would an unobserved population
look like). Different types of inference require different processing of model results
Recommendation: Be explicit about which inference is desired, and how reported results are matched to this type of inference.
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dient. This study illustrates that it is reasonable, in

many cases, to view populations that are geo-

graphically close as having more in common than

geographically distant populations (i.e. the first

law of geography, Tobler 1970).

Despite the number of recruitment meta-analy-

ses conducted to date, recruitment remains a ripe

area for the application of meta-analyses. Due to

computing and software advances, the construc-

tion of complex hierarchical models has become

relatively fast and easy. However, it is increasingly

clear that stock-recruitment data at a stock-wide

scale do not alone have enough information to

resolve the drivers of recruitment variation. This

necessitates the careful construction of models that

can be linked to other data sources. We see partic-

ular potential in the incorporation of reproductive

biology (e.g. the relationship between fish size and

spawning output) into recruitment meta-analyses

(Rothschild and Fogarty 1989; Morgan et al.

2007; Kuparinen et al. 2012). Such analyses first

require that researchers break aggregated pro-

cesses (e.g. the number of recruits arising from a

population) into several measurable components

(in this case, egg production as a function of fish

size, skip-spawning as a function of fish age, sex-

ual maturity as a function of location, age and

length, etc.). Next, data must be collected for each

disaggregated component, preferably in a way that

uses replication among sites, years or populations

(Dick 2009; Thorson et al. 2013; Thorson et al.

2013). Third, models must be developed that use

parameters that are comparable among replicated

sites and years (e.g. spawning frequency as a func-

tion of age; Fitzhugh et al. 2012). The process of

disaggregating stock-wide recruitment into several

measurable and replicated processes remains a ripe

area for future meta-analysis.

Example 2: rebuilding, population viability and

extinction

Applying meta-analysis to fish stocks is important

in understanding response patterns of fish popula-

tions to fishing pressure and intrinsic population

processes such as density dependence and environ-

mental stochasticity, but also has utility for evalu-

ating population viability and recovery. Using

meta-analyses to assess rare events, such as

extinction, may not be very informative in marine

fish populations, because of the small sample size

of populations or species that have recently gone

extinct (in recent years, most extinctions have

been in freshwater systems; Reynolds et al. 2002).

Nevertheless, fisheries meta-analyses of rebuilding

stocks can illuminate which species traits are cor-

related with productivity and susceptibility to fish-

ing. The core messages from these analyses are

that habitat loss and overfishing are the main

causes of depletion (Reynolds et al. 2002; Dulvy

et al. 2003) and that depletion is much more rapid

than recovery even for fast growing species

(Hutchings 2000). However, we here focus on a

central difficulty in meta-analyses of risk and

rebuilding in fisheries, that is, how to define repli-

cate units for analysis. Below, we explore the three

approaches that have previously been used: global

databases; substituting space for time in the

absence of long-term monitoring; and drawing

upon lessons from other taxa and/or systems.

Meta-analyses investigating patterns of the col-

lapse and recovery of marine fish populations have

most often used large databases from multiple geo-

graphical regions (Myers and Barrowman 1996,

Liermann and Hilborn 1997; Hutchings 2000; Ri-

card et al. 2012). These databases typically consist

of time series of spawner biomass and recruitment,

and are not presented as data at the observational

level, but model output from agency stock assess-

ments. Studies in these fisheries meta-analyses

may be subject to both geographical and taxa-spe-

cific selection biases. Geographically, countries in

North America, Europe, Australia and New Zea-

land are represented well, whereas countries in

South America, South-East Asia and Africa are

less well represented. Similarly, fish stocks that

have a history of commercial exploitation and

assessment (e.g. Atlantic cod) are typically more

represented than less-fished stocks. This lack of

random or representative sampling could be

addressed in future studies using propensity scores

to control for the likelihood of a given stock being

assessed and could be improved by compiling

abundance information for entire regions rather

than just previously assessed stocks (Pauly et al.

2013).

Lessons from meta-analyses built on these global

fisheries stock assessment databases are typically

focused on large-scale associations between species

traits and management outcomes, where each

population or stock is assumed to be a replicate

from a shared process. For example, species that

are schooling, easy to catch (both targeted and as

bycatch) and have limited ranges appear to be
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particularly prone to depletion (Dulvy et al. 2003).

In another example, using a global database of

stock–recruit relationships, Hutchings (2000) per-

formed a regression meta-analysis of 90 global

stocks. He demonstrated that only 8% of stocks

are fully recovered 5 years after experiencing a

decline of >45% and only 12% of stocks after

10 years. However, 50 of the 90 stocks in this

meta-analysis belonged to the Clupeidae or Gadi-

dae families. This lack of taxonomic representation

is again typical of most global analyses of risk or

rebuilding.

A second approach for defining replicate units

in fisheries meta-analysis uses time-series methods

that substitute space for time. In the absence of

long-term datasets, spatial replicates of shorter

time series can be used as a ‘space for time’ to

assess the effects of fisheries management. This

approach has been widely used in the analysis of

ecological time-series meta-analyses (Holmes and

Fagan 2002; Ward et al. 2009), for example, to

assess the potential impacts of ocean acidification

or warmer ocean conditions (Paddack et al. 2009;

Kroeker et al. 2010). For example, Kroeker et al.

(2010) were able to examine changes in growth,

survival and calcification rates due to increasing

acidification. They estimated these effects by

extracting log-response ratios (e.g. difference in

log-survival rates between normal-pH control and

reduced-pH treatment groups) from published

studies and analysing how they varied among

taxa and between larval and adult stages. Their

results showed that nearly all population processes

showed negative impacts of increasing acidificat-

ion, but that survival and calcification were most

affected. However, future research could corrobo-

rate these results using different spatial and tem-

poral scales in the ‘space for time’ swap.

Finally, fisheries meta-analysis can progress in

identifying species recovery targets by incorporat-

ing data and conclusions from terrestrial ecology.

Examples include Brook and Bradshaw (2006),

which showed widespread support for density-

dependent population regulation although fish spe-

cies had less support than other taxa. Similarly,

Gregory et al. (2010) examined patterns of early

juvenile survival across taxa and found little sup-

port for depensatory population dynamics (Allee

effects), thereby supporting previous conclusions

specifically for fishes (Liermann and Hilborn

1997). However, both studies used a weight-of-

evidence approach that involved either counting

the number of populations that supported a partic-

ular hypothesis or assessing the relative goodness

of fit for each population individually and then

subsequently averaging across species. These stud-

ies could therefore be improved by moving to a

single-stage, hierarchical approach.

Example 3: habitat-specific vital rates

Marine ecology and fisheries could benefit from an

improved understanding of spatial and temporal

variability in demographic rates, and meta-analy-

sis is one approach to this study. For simplicity,

we restrict this example to a single demographic

rate, that is, juvenile survival as it relates to habi-

tat type and quality. For species with distinct juve-

nile habitat, some locations may produce

disproportionately more juveniles per unit area

that recruit to adult populations. Such areas are

known as nursery habitats (following definition in

Beck et al. 2001), and four factors can affect their

quality, that is, greater density, juvenile survival,

growth and movement to adult habitats (Beck

et al. 2001). We found only three meta-analytic

studies focusing specifically on the nursery role of

marine habitats. These studies focused on seagrass

(Heck et al. 2003; Minello et al. 2003), salt marsh

(Minello et al. 2003) and mangrove (Sheridan and

Hays 2003) habitats, and point to several conclu-

sions. Of these three habitat types, the best support

for a nursery role existed for seagrass habitats,

and there was little indication from the meta-

analyses that salt marshes and mangroves serve a

nursery role. However, none of the meta-analyses

were able to evaluate whether habitat-specific dif-

ferences in density, growth and survival of juve-

niles actually influenced recruitment rates to adult

populations, which is necessary to determine

whether juvenile habitats are playing a nursery

role (Gillanders et al. 2003). Similar densities or

growth rates among juvenile habitats are not nec-

essarily coupled to similar rates of successful

migration to adult habitats (Beck et al. 2001).

Nonetheless, these studies were informative as the

only synthetic analyses of their kind. However, we

highlight three methodological issues here: selec-

tion bias, failure to use observation-level data and

uncontrolled differences in experimental design.

Selection bias is a fundamental obstacle for any

study attempting to evaluate the nursery role of

different juvenile habitats, because it is infeasible

to randomly assign habitats to treatment and con-
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trol groups. Out of practical necessity, the proba-

bility of a particular location being assigned to the

control treatment will be confounded with the

effect of that location on juvenile densities, sur-

vival, growth and movement. Common habitats

are more likely to be selected as controls, as was

the case for unvegetated and seagrass habitats in

the Sheridan and Hays (2003) study. This selec-

tion bias influences the outcome of any compari-

son with the treatment group and is inherent to

the analytical framework commonly used to test

the nursery habitat hypothesis (Heck et al. 2003;

Minello et al. 2003). In future work, propensity

score techniques may prove useful in accounting

for selection bias in meta-analyses of the role of

nursery habitats for fish populations.

In meta-analyses of survival in juvenile habitat,

researchers generally employed effect-size models

(i.e. analysed the mean and variance parameters

from each primary study, as defined previously). It

will remain difficult to conduct single-stage analy-

ses until observation-level data from published

studies are made publicly available on a regular

and consistent basis. For example, roughly half of

the studies included in the meta-analysis by Mi-

nello et al. (2003) were originally conducted by

the authors themselves, and this situation is unli-

kely to change until data archiving requirements

are stipulated for fishery journals. The choice to

perform a two-stage meta-analysis represents a

lost opportunity to improve the precision of

parameter estimates from the original studies

using a hierarchical modelling framework. This

improvement would be particularly apparent for

the primary studies in which sample sizes were

small and/or estimated variance was high. In addi-

tion, a hierarchical meta-analysis would allow

improved estimation of effect sizes, which provide

a synthetic sense of the nursery role of alternative

juvenile habitats. Finally, effect sizes generated via

two-stage meta-analysis of all studies could be

compared, at least qualitatively, with those from

the single-stage analysis of studies where raw data

were available.

A hierarchical modelling framework also makes

it convenient to account explicitly for variation

caused by differences in experimental design. All

of the nursery habitat meta-analyses we surveyed

included results from laboratory and field experi-

ments (Heck et al. 2003; Minello et al. 2003) or

from observational and experimental studies (Sher-

idan and Hays 2003). To their credit, in each

meta-analysis, the authors made a qualitative

(Sheridan and Hays 2003) or quantitative (Heck

et al. 2003; Minello et al. 2003) comparison of the

influence of experimental design on estimated

effect sizes. An alternative approach would have

relied upon a mixed effects model that included a

random effect term for the influence of the type of

experimental design on the fixed treatment effect

(habitat type in this case). Notably such an analy-

sis could have been conducted using a two-stage

approach in the absence of observation-level data.

However, a hierarchical modelling framework

would allow for more precise estimation of treat-

ment effect sizes for individual studies by updating

the estimated influence of the random effect due to

experimental design based on information across

all studies.

Despite these issues, we note that these three

studies addressed other possible concerns. In par-

ticular, they were attuned to the potential impor-

tance of covariates that differed among primary

studies. The authors accounted for factors such as

geographical region, season and tidal stage

through comparisons of subsets of the full data

sets they analysed. The authors also addressed

non-independence of model output (e.g. survival

rates estimated for multiple species in a single

experiment). However, none of the studies

addressed all of our concerns. In particular, new

meta-analyses employing hierarchical models

could account for experimental design differences,

covariates and non-random assignment of study

sites to treatment and control groups, and would

likely increase precision for effect-size estimates.

Similarly, attention to functional variability across

primary studies in the analysis of different factors

influencing the nursery role of living habitats (e.g.

the putative causes of death and growth, such as

predation rates and food availability) would pro-

vide additional insight in cases where confidence

intervals around effect sizes were large (e.g. Sheri-

dan and Hays 2003).

Example 4: life-history parameters

Exploring relationships among life-history traits

has a long history in fisheries science. This long

history underlines both how important these

parameters are to population dynamics and how

difficult they are to measure. Beverton and Holt

(1959) offer an early example of both compiling

and analysing these traits across species groups.
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Investigation of the biological basis for these rela-

tionships has also lead to theory regarding life-his-

tory strategies (Stearns 1976; Adams 1980;

Winemiller 1989) and life-history invariants (i.e.

constants of proportionality across taxa; Charnov

and Berrigan 1990).

Most life-history meta-analyses after 1997 use

simple linear models applied to a mix of model out-

put and observational data. These models tend to

regress life-history traits against each other (usu-

ally in log-space) to form a predictive or at least

interpretive relationship. Such an approach is intu-

itive and simple, but can lead to underestimation

of parameter uncertainty. One major assumption

is that all residual errors are in the dependent vari-

able. The use of errors-in-variables and random

effects models can help overcome such an assump-

tion. Pascual and Iribarne (1993) warn that r2 is

a misleading measure of predictive power and that

predictive intervals (the 3rd goal of meta-analysis

listed previously) should explicitly be used when

employing parameter estimates from fixed effects

models to make inference for unstudied species.

One widely cited example of a fixed-effect

approach to meta-analysis is Froese and Binohlan

(2000), which presents empirical relationships for

age and growth parameters, maturity and longev-

ity. Data were culled from FishBase (www.fishbase.

org, Froese 1990), which are generally taken from

direct measures, but model-derived outputs are not

fully excluded. The authors assume log–log rela-

tionships and include estimates of uncertainty in

the form of standard errors. No predictive intervals

are included. These types of relationships have

become important tools, in particular for species

lacking direct measures, and have been shown to

be very valuable when parameterizing population

dynamics (Denney et al. 2002) and/or simulation

models (Cope and Punt 2009). However, results

must be interpreted cautiously. For example, Chen

and Yuan (2006) present the relationship between

longevity and the intrinsic rate of population

increase across 18 shark species. Both regression

variables are themselves derived from empirical

equations using the von Bertalanffy growth func-

tion parameters. This ‘daisy chaining’ approach to

the calculation of life-history parameters is not

uncommon and needs to be considered when apply-

ing the results of any subsequent analyses. Specifi-

cally, results might be appropriate for constructing

a strategic simulation model but less suitable for

tactical management decisions.

Life-history invariants are a special case of the

log–log linear model (i.e. a linear model with x-

and y-axes in log-scale) where the slope equals 1

(or �1) and the intercept is interpreted as govern-

ing a life-history relationship that is conserved

across taxa. Charnov et al. (2013) provides a

recent example as applied to estimating size-spe-

cific natural mortality from von Bertalanffy

parameters for marine fishes and attribute the

invariant relationship to evolutionarily derived al-

lometric assembly rules. However, Nee et al.

(2005) show that even random numbers can gen-

erate a slope of 1 with high r2, thereby question-

ing the previously accepted process for identifying

life-history invariants.

Hierarchical models remain underrepresented in

the marine fish life-history meta-analyses literature

compared with conventional linear models. All

hierarchical life-history models have been pub-

lished after Liermann and Hilborn (1997), with

the majority focusing on estimation of growth

parameters. For example, Helser et al. (2007) con-

ducted a meta-analysis on rockfishes (Sebastes

spp.), a species-rich genus of marine fishes. Their

model included experimental variability in terms

of individual length-at-age measurements, as well

as parametric variation between species and for

parameters within a given species. The authors

also included gender, depth and size at maturity

as covariates to control for these confounding

effects, and estimated growth parameters for each

study species as well as for a species with

unknown growth parameters. They compare the

results of this model with linear models fit to each

species in turn. They found that estimates were

comparable whether they were fit individually or

in the hierarchical model, but that the hierarchical

model produced lower parameter variance and

correlation among parameters. The hierarchical

structure was able to provide improved estimates

of growth curves for data-poor species, as well as

for species with no growth data.

Life-history traits remain a ripe area for applica-

tion of meta-analysis in part due to the continuing

development of life-history databases. However,

results from life-history meta-analyses should be

applied cautiously, especially when it comes to

out-of-sample extrapolation. Meta-analytical

approaches should not necessarily assume that the

species included in the analysis appropriately rep-

resent species not included in the analysis. As one

example, the Charnov et al. (2013) method of esti-
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mating natural mortality may be appropriate to

many marine fishes, but it is inappropriate for

many shark species due to large differences in life-

history relationships between fishes and elasmo-

branchs.

Example 5: marine reserves

Marine reserves are a popular management strat-

egy for exploited species. However, many reserves

are created without an understanding of whether

they effectively increase fish density, biomass, size

and other biological characteristics. To address

this information gap, several large meta-analyses

have compared multiple reserves to quantify differ-

ences in effect size and recovery rate as a function

of location and longevity. Overall, meta-analyses

have found that marine reserves provide positive

benefits both to species and habitats. However, the

reliability of these results has been questioned due

to the lack of comparability between measures of

effectiveness, site location, model designs and the

confounding of model assumptions with demon-

strated facts. In this last case-study, we discuss

some of the key meta-analytic studies on marine

reserve effectiveness with respect to their design

and potential sources of bias.

The published studies on marine reserve effec-

tiveness prior to 2005 tended to be control-impact

designs where sites within the reserves were com-

pared with adjacent sites outside the reserve. In

particular, the studies by Halpern and Warner

(2002) and Halpern (2003) included 89 indepen-

dent studies of marine reserve effects, only 17 of

which included ‘before-after’ measurements, and

only nine of which included both ‘before-after’ and

‘control-impact’ measurements. One of the first

studies to look critically at the differences between

reserves was a meta-analysis of reserve ‘zones’

within the Galapagos Marine Reserve (Edgar et al.

2004). In this study, a comparison was made

between 62 tourism sites (no fishing allowed), 45

fishing zones (no tourism allowed, ‘no-take’) and 9

mixed-use zones. This study found that densities of

sea cucumbers, the most valuable fishery resource

in the Galapagos, were three times higher in the

areas open to fishing. This surprising result was

attributed to selection bias (as discussed previ-

ously) in the placement of the reserve zones due to

socio-political factors, for example, fishers push for

larger no-take zones in resource poor areas,

whereas divers push for protection of areas with

features of interest. The authors point out that this

selection bias, which is not typically included in

marine reserve studies, could serve to confound

the results from meta-analyses that incorporate

results from such ‘control-impact’ studies.

Additionally, before-after control-impact studies

only capture the direct effects of marine reserve

implementation that produce an absolute increase

in abundance, size or biomass. They cannot cap-

ture indirect effects due to reserves, which may be

a result of species interactions. Babcock et al.

(2010) attribute this to the fact that trophic inter-

actions are determined by absolute values (of

abundance, size or biomass), not relative differ-

ences between reserves and fished areas. For

example, ratios between reserves and fished areas

may not capture reserve effects if community

assemblages are protected within the reserve while

targeted species decline over time in fished areas,

possibly at a faster rate than prior to reserve

implementation due to displaced fishing effort.

Therefore, the ratio approach may actually provide

fewer insights into the temporal dynamics and

associated variation in reserve effects than contin-

uous time series after closure. Hence, Babcock

et al. (2010) used continuous time series of raw

data for each reserve to explore the temporal

dynamics that may produce changes in marine

reserves as opposed to ratios of reserve to non-

reserve values. Using raw data, they avoided issues

related to model output. They found that the

detection of direct effects on target species

occurred over relatively short intervals after

reserve implementation (5.13 � 1.9 years), while

the detection of indirect effects on non-target spe-

cies occurred after significantly longer periods

(13.1 � 2.0 years). In general, target species

showed initial direct effects, but there was consid-

erable variation in species trajectories over time

(parametric variation).

Willis et al. (2003) noted several key aspects of

current research on the potential for positive

effects of reserves on marine species. First, while

the number of empirical studies on marine

reserves increased between 1991 and 2001, this

lagged behind the number of review studies. Sec-

ond, the number of theoretical studies of marine

reserve benefits also increased greatly since 1997.

However, they noted a lack of published evidence

to empirically judge these models and their

assumptions. Third, the fact that there were so

many new models and reviews had led many to
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take model assumptions as accepted theory. They

concluded that while there may be many benefits

garnered from marine reserve establishment, often,

‘intuitive speculations’ appear as ‘logically true

assertions’ in the literature. These lessons could

also be drawn from meta-analyses regarding

recruitment, life-history invariants or many other

fields where theoretical arguments and meta-

analyses have generated conclusions that may

well be controverted when additional data are col-

lected and analysed using appropriate hierarchical

models.

Looking forward

In this study, we have provided a general back-

ground and several key distinctions among the

common types of meta-analyses seen in fisheries.

We listed the common and often unacknowledged

problems that occur in meta-analysis, including

difficulties in distinguishing between alternative

hypotheses, the importance of validating results

using multiple lines of evidence, and the trade-off

between complexity and sampling size. We then

showed how these common problems are encoun-

tered within different research threads in fisheries

science. We now conclude by providing our per-

spective on the future of fisheries meta-analysis.

We believe that meta-analysis has an important

role to play in fisheries science for three reasons.

First, fisheries questions are often characterized by

a large spatial and temporal scales, and this often

necessitates the use of opportunistically collected

data. Second, marine fishes are often difficult to

observe, and therefore, surveys of fish abundance

often have large measurement errors (e.g. Thorson

and Ward 2013). For this reason, information

might be scarce for a single site and/or population,

which necessitates the combination of information

from multiple experimental units. Third, fisheries

questions are urgent. Research results are fre-

quently used for management of recreational and

commercial fishers, and we therefore are obligated

to pursue accurate and highly precise estimates

for complicated processes. In many cases, these

goals can only be attained by synthesizing infor-

mation from multiple species.

We also note that fisheries research, like the rest

of population ecology, is being revolutionized by

several important trends. These include the

increasing prevalence of rich and global databases,

that is, FishBase (Froese 1990) for life-history

traits, the RAM Legacy Stock Assessment Database

(Ricard et al. 2012) for stock-recruitment and

management information and the Sea Around Us

project (Pauly 2007) for productivity, fishing

effort, spatial catch and many other data products.

Also important is the expanded feasibility and ease

of building complex and detailed meta-analysis

models. This is helped by improved computational

power, but also by improved statistical software

such as JAGS (Plummer 2003) for Bayesian mod-

elling and AD Model Builder (Fournier et al. 2012)

for maximum likelihood models.

However, these trends also provide greater

leeway for poorly planned and implemented meta-

analysis. Taking a retrospective look at meta-analy-

sis since its popularization by Hilborn and

Liermann’s (1998) ‘Standing on the shoulders of

giants…’, we see that many problems continue to

occur for meta-analyses spanning the range from

recruitment studies to evaluation of management

actions. We therefore propose that authors, readers

and reviewers take note of the many challenges and

solutions that we have noted, and hope that this

will improve the quality of meta-analyses going for-

ward, with the potential to advance nearly every

field in fisheries science.
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